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The mass transport of a diffusible substance during volume-cycled oscillatory flow in 
a thin-walled viscoelastic tube is studied. A small-amplitude, long-wavelength 
travelling wave is generated by the oscillatory pressure gradient. Lubrication theory 
is employed for slow axial variations to derive regular perturbation solutions to the 
NavierStokes equations. The convection-diffusion equation is solved in a similar 
manner, assuming uniform steady end concentrations and no wall flux. From the 
velocity and concentration fields, the time-average rate of axial mass transport is 
calculated, and its dependence on oscillation frequency, tube stiffness, and stroke 
amplitude is investigated. The general result is that transport is enhanced less for 
softer tubes than for stiffer ones and that mass flow rate as a function of frequency 
reaches a local maximal value. The results are related to gas transport in pulmonary 
airways during high-frequency ventilation. 

1. Introduction 
The primary function of the lung is the exchange of oxygen and carbon dioxide. 

Other substances, such as anaesthetics, aerosols, and toxins, are also delivered and 
removed from the lungs. Mass transport in the lung depends on convection, diffusion, 
and their interaction during oscillatory flow. In many clinical situations, a 
mechanical ventilator is required for breathing. Conventional ventilators mimic the 
breathing cycle, delivering breaths of 500 ml at  a frequency of 15 breaths per minute. 
As in regular breathing, conventional ventilators rely primarily on convection to 
transport gases through the upper airways to the respiratory zone, where diffusion 
becomes the primary transport mechanism. However, in order to obtain tidal 
volumes comparable with those of the regular breathing cycle, large pressures are 
required to force the air, which can result in pulmonary barotrauma and impaired 
cardiac function (Slutsky et al. 1980). High-frequency ventilation (HFV) is an 
alternative type of ventilation under investigation (Bohn et al. 1980). In HFV, 
relatively small tidal volumes of air (35-150 ml) are delivered at  high frequencies 
(5-30 Hz), so that pulmonary barotrauma and cardiac impairment are avoided. 
Instead of convection alone, HFV relies on the interaction of convection and 
diffusion to transport gases in the upper airways. 

A theoretical model of the lung undergoing HFV would lend insight to the 
important mechanisms and geometrical features that enhance or inhibit mass 
transport, leading to the improved design of ventilators and to the development of 
diagnostic techniques. The simplest model of a pulmonary airway is a straight, rigid 
tube. Harris & Goren (1967), Chatwin (1975), Watson (1983) and Joshi et al. (1983) 
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studied mass transport during oscillatory flow in such a model. In particular, they 
studied how the transport rate varies with the Womersley parameter, a = a(w/v)r,  
and the amplitude parameter A = d/a ,  where a is the tube radius, w the angular 
frequency of oscillation, v the kinematic viscosity of the fluid, and d the stroke 
distance defined by d = VT/Ka2, where V, is the tidal volume. They found that the 
transport is governed by the interaction of radial diffusion and axial convection and 
increases monotonically with increasing a for fixed A and Schmidt number, Sc. 
However, experimental results of HFV (Bohn et al. 1980; Rieke, Hook & Meyer 
1983; Mitzner, Permutt & Wienmann 1983), suggest the existence of an optimal 
frequency of oscillation, leading us to  the conclusion that a simple, straight, rigid 
tube is an incomplete model of a pulmonary airway. Indeed, the lungs’s airways 
consist of tapered, curved, branching, flexible-walled tubes of varying length and 
diameter. Each geometrical and physical feature may enhance or inhibit mass 
transport at a particular tidal volume or frequency of oscillation. A reasonable 
approach is to examine each feature individually as a means of understanding the 
total phenomenon. 

The effects of taper on mass transport were studied theoretically by Grotberg 
(1984) and Godleski & Grotberg (1988) and experimentally by Gaver & Grotberg 
(1986). Assuming a small taper angle, E ,  Godleski & Grotberg found solutions for the 
velocity and concentration fields that were regular perturbation expansions in E .  

Their results indicate that the rate of axial mass transport in a tapered tube can be 
greater or less than the straight-tube case, depending on the values of A ,  a, and E .  No 
local maxima of transport versus a were predicted, however. These papers also 
investigated the development of bi-directional steady streaming during volume- 
cycled flow and the steady pressure gradient which evolves. The steady pressure 
gradient was found to yield higher average pressures a t  the wider end of the tapered 
section, and to increase with increasing a. This is consistent with the observation by 
Simon, Weinmann & Mitzner (1984) of a steady pressure gradient in dog lungs during 
HFV, with larger pressures near the alveolar zone than a t  the bronchi. They also 
observed that the gradient increases with frequency. 

Eckman & Grotberg (1988) investigated the effect of tube axial curvature on axial 
mass transport. In  their analysis, S, the ratio of tube radius to the radius of 
curvature, was assumed to be small. Solutions to  the Navier-Stokes and 
convection-diffusion equations were posed as regular perturbation expansions in S. 
They found that tube curvature increases the rate of axial mass transport for all 
values of A and a and experiments by Sharp et al. (1991) demonstrate this 
enhancement. Also, when the mass transport rate was plotted against a for certain 
values ofA. Eckmann & Grotberg (1988) showed that a local maximum value of mass 
transport occurs a t  some finite value of a. This maximum occurs because of the a- 
dependent phase relationship between the velocity and concentration fields, the 
lateral mixing being complicated by secondary flows. As a is increased beyond this 
local maximum, the transport decreases slightly, and then becomes monotonically 
increasing with a. Hence the appearance of an optimal frequency for transport 
during HFV, within a limited range of cycling frequencies, may have contributions 
from axial curvature effects. Pedley & Kamm (1988) described a model dispersion 
problem of secondary flow effects and found a resonance behaviour responsible for a 
local maximum in axial transport. 

The effect of wall flexibility on gas exchange efficiency is particularly important, 
since, unlike curvature or tapering, airway flexibility changes in disease states. I n  the 
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lungs, wall flexibility can be interpreted as compliance, which is defined as the 
pulmonary volume change per unit pressure change. Patients with fibrosis and infant 
respiratory distress syndrome suffer from decreased compliance. Aging and 
emphysema tend to increase lung compliance. Understanding the relationship 
between compliance and gas transport during HFV is essential; a given stroke 
amplitude and frequency may adequately ventilate one patient, while a completely 
different set of parameters would be necessary for another. Establishing the 
dependence of gas exchange efficiency on lung compliance could also enable HFV to 
be used as a diagnostic tool. Our intent in the present paper is to examine the effect 
of flexibility on dispersion in a single tube, the fundamental unit comprising the 
pulmonary airway network, as a means of providing a basis for interpreting overall 
lung transport behaviour. 

Atabek & Lew (1966), amongst many others, studied wave propagation in a 
viscous fluid contained in an elastic tube. The tube in their model was thin-walled, 
isotropic, and initially stressed in both the tangential and circumferential directions. 
They solved the linearized Navier-Stokes equations and examined the resulting 
waves. In the analysis that follows, we employ Atabek & Lew’s model of a flexible 
tube, with the additional consideration of wall viscosity. First, we solve for the 
velocity field of oscillatory flow in a flexible tube; next, the concentration field of a 
diffusible substance is determined ; finally, the average axial mass transport rate per 
cycle is computed. The results are interpreted with respect to pulmonary gas 
transport. 

2. Velocity field: problem formulation 
Consider a fluid-filled flexible tube with a right cylindrical coordinate system in 

which z* is the axial coordinate, r* the radial coordinate, and 8 the angular 
coordinate (the asterisks denote dimensional quantities). The tube, which is infinitely 
long, thin walled, isotropic, and impermeable has the following characteristics : 
density p,,, modulus of elasticity E ,  damping coefficient g, Poisson’s ratio y ,  wall 
thickness h, undisturbed inner radius a, and undisturbed midplane radius R,* (note 
that a = R,* - ih) .  Both circumferential and longitudinal initial stresses are 
considered, denoted by TBo and T,*, respectively. Deformations of the tube take 
place in both the radial and axial directions, and are denoted by T* and t* respect- 
ively. 

The tube is filled with a Newtonian viscous fluid characterized by density p and 
kinematic viscosity v. We consider only the problem of periodic flow in the tube, so 
that any transient effects from the starting up of the piston are assumed to have 
decayed to zero and any end effects at  the piston are neglected. Though the tube is 
considered to be infinitely long, we focus only on a finite portion of the flexible tube, 
a section of length L. The system is assumed to be isothermal and all body forces 
within the fluid are neglected. The fluid in the tube is volume-cycled such that a fixed 
volume of fluid, V,, passes through the axial position z* = 0 in one half-cycle. We 
define the angular frequency of oscillation as w and the stroke length as d = VT/na2. 
Because the tube is flexible, the volume-cycling produces travelling wave 
disturbances in the radial and axial directions in both the wall and the fluid. We 
define the velocity vector u* = (u*, w*), whose components are in the (r* ,  z * )  
directions, respectively ; because we assume axisymmetric flow, there is no 8-velocity 
component. Also, let p* be the pressure difference between the inside and outside of 
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the tube. All the variables of the problem can be made dimensionless by scaling them 
as follows: 

r = @/a, z = z*/a, R = R*/a, 7 = ?*/a,  6 = E*/a, ] (2 .1 )  u = u*/SU, w = w * / u ,  t = U P ,  p = p*/pu2,  

where a viscous velocity scale, U = v / a ,  has been chosen. For our applications we 
expect long-wave phenomena, so we employ lubrication theory to define the slowly 
varying axial coordinate [ = Sz where S < 1 and is inversely proportional to the 
wavelength of the travelling wave disturbances that propagate down the length of 
the tube. 

Five dimensionless parameters arise from the scalings in (2 .1)  and appear in the 
governing equations below. They are defined as follows : 

Here, A is the amplitude parameter, relating the stroke length to the average inner 
tube radius, and a is the Womersley parameter (dimensionless frequency) which 
relates the unsteady acceleration stresses to the viscous stresses of the fluid. The 
parameters M ,  G ,  and K appear in the stress boundary condition ; M is the ratio of wall 
mass to fluid mass; G is the ratio of wall damping to fluid damping; and K ,  the 
stiffness parameter, relates the radial tube stiffness to the fluid resistance to shear 
deformations. ~f may also be interpreted as a wave speed ratio where (Elp,)h is a 
characteristic elastic wave speed and vla is a characteristic fluid shear propagation 
speed. 

The behaviour of the fluid is governed by the Navier-Stokes equations in 
cylindrical coordinates. In dimensionless form they are 

and the conservation of mass for an incompressible fluid is given by 

The no-slip boundary condition is 

a7 h 
at 2a 

SU = a2- a t  r = R(z , t ) - - - ,  

86 h 
at 2a 

w = a2- a t  r = R ( z , t ) - - - .  

( 2 . 3 ~ )  

(2 .3b )  

( 2 . 5 ~ )  

(2 .5b )  

We also impose a balance of the internal, inertial, and surface forces on the wall. 
A stress boundary condition is derived by Atabek & Lew (1966)  for a thin-walled, 
axisymmetric elastic tube. Adding a wall damping force to their condition gives the 
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stress boundary condition for a viscoelastic tube. The radial component has the 
dimensionless form 

and the axial component is given by 

”I 
aRa2r a2g 2G 36 6--+-+-- a[ at2 at2 a2 at 

= O  a t  r = R - h / 2 a .  (2 .6b)  

The quantity r is defined as r = 1 +dz(aR/i3[)z. 
At  this point in the analysis we introduce the volume-cycling condition, which 

ensures a fixed leading-order tidal volume at a given axial position. Considering 
again the dimensional coordinate system, a t  a fixed axial position, say z* = 0, and in 
the limit 6+0, we constrain the axial velocity to a fixed stroke volume, V,, defined 
as 

V, = [; r l w : ( r * , O , t * ) r * d r * d B d t * ,  (2 .7 )  

where the time interval t: to t: is the time it takes for a full unidirectional stroke of 
the piston. Scaling the above equation, recalling the definition V, = &a2, and 
integrating once with the appropriate values for to and t,  we obtain the dimensionless 
volume flow rate condition 

1 w0(r, 0 ,  t )  r dr = $4a2 eit + C.C. ( 2 . 8 )  

where C.C. denotes the complex conjugate. 

3. Velocity field: method of solution 
To determine a solution for the velocity field and pressure, we use an asymptotic 

expansion of each dependent variable in powers of 6, the long-wavelength parameter. 
These expansions have the form 

( 3 . l a )  

(3.1 b )  

( 3 . 1 ~ )  

The axial pressure gradient is assumed to be an order larger than the fluid velocities 

u(r,  5, t )  = uo(r, 6, t )  + &u,(r, 6, t )  + O(% 
w(r ,  g, t )  = WO@, L t )  + %(r, c, t )  + O(% 

1 
p ( r ,  c;, t )  = -j bo(r, I ,  t )  + h ( r ,  g, t )  + O(S”1. 
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in order to provide a driving force for the fluid to  balance the local acceleration and 
viscous terms in (2.3b). 

For our applications we expect small-amplitude disturbances of the wall, so it is 
appropriate at this point to  introduce another small parameter, E ,  which represents 
the order of magnitude of the radial wall displacement. Therefore, we propose 
asymptotic expansions of the wall displacements of the form 

r(69 t )  = E 7 1 ( 5 >  t )  + E 2 7 2 ( L  t )  + O(E3)> ( 3 . 2 ~ )  

E(69 t )  = E E l ( 5 ,  t )  + E 2 f 2 ( L  t )  +O(s3) ,  (3.2b) 

and assume that E = b6, where b is O(1).  Indeed, we set b = 1 for the remaining 
analysis. 

The assumption of small-amplitude wall displacements enables us to relate the 
midplane radius to the radial wall displacement 

R(5, t )  = R, + 7(5, t ) .  (3.3) 
It can be shown that relation (3.3) is true to O(S2). As a result, the free boundary of 
the fluid, previously described as r = R-h/2a, may be replaced by r = 1 +r([ ,  t ) .  In  
the no-slip and stress boundary conditions above (equations (2.5-2.6)), we are 
required to  evaluate the field variables (w, u , p )  of the form f = f ( r ,  5, t )  a t  the 
unknown boundary, r = 1 +7 .  Using Taylor's theorem, together with the asymptotic 
expansion in 6, the boundary conditions can be expanded about the known position 
r = 1, where each field variable at the boundary takes the form 

(3.4) 

Finally, we wish to preserve the wall inertia and initial stresses in the stress boundary 
conditions in the limit 6+0. To do this, we define 

Inserting the above expansions for u, w, p ,  7,  and f into the governing equations 
and equating to zero the coefficient of each power of 6 gives a set of linear partial 
differential equations a t  successive orders of 6. The first two orders of this 
substitution, O( 1/S2) and O( 116) in (2.3a), dictate that  apo/ar = 0 and apl/ar = 0. At 
O( 1) the uncoupled set of partial differential equations have travelling wave solutions 
of the form 

( 3 . 6 ~ )  

(3.6d) 
(3.6e) 

In  the above expressions J, is the Bessel function of the first kind of order n, a = olig 
and we introduce k, the wavenumber, which has the form 

k = k, + 6k, + O(S2). (3.7) 
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The solution to the governing equations also yields an expression for the leading- 
order wavenumber k,  of the form 

We choose the positive travelling wave, positive root, for our analysis and will denote 
as k,, and k,, the real and imaginary parts of k,, respectively. 

The O(6) solutions for w1 and p 1  consist of a sum of periodic, doubly periodic and 
steady terms : 

w1 = WiO)(r) e2k15+ Wp)(r) e-i(Wt) + W(Z)(r) 1 e-Zi(k5-t) + c.c a ,  (3.9a) 

p ,  = e2k1b+p:z) e-Zi(kC-0 + c . .  c (3.9b) 

As a result, we expect steady streaming in both the axial and radial directions. These 
steady velocities are most prominent near g = 0 and decay along the length of the 
tube. Because of the steady streaming and steady pressure gradient, there is also a 
time-independent radial deformation of the tube superimposed on the travelling 
wave deformation. Looking ahead to the mass transport rate calculation, we see that 
the relevant information for our analysis at this order is the steady axial velocity. 
Separating variables in the O(S) fluid equations and solving for the steady axial 
velocity profile gives 

Wio)(r) = ~ k o , P ~ o ) r ~ + $ ( r ) + l l ,  

where the quantity $(r)  is defined as 

$(r)  = ~ ~ ~ [ U , ~ - i k , $ W , ] s d s d q  - dW, 

0 4  0 

(3.10) 

(3.11) 

in which the overbars indicate complex conjugate. P y ) ,  the steady pressure 
amplitude, and l , ,  the constant of integration, are determined by the boundary 
conditions and can be expressed as 

) +$(1)-2 $(r)rdr ] , (3.12) 

dr 
(3.13) 

4. Velocity field: results 
The wavenumber, velocity field, and wall displacements depend on the 

dimensionless parameters discussed earlier. We are most interested in determining 
the effect of flexibility, K ,  on the system over a range of frequencies, a. The following 
results were obtained for fixed mass parameter M = 49, and damping parameter 
G = 13.4. These values were computed using approximate values of p, p,, h, a, v, D ,  
(the molecular diffusivity) and g for air in the trachea ; their numerical values and the 
basis on which they were chosen are discussed in the Appendix. Unless otherwise 
specified, the amplitude parameter is fixed at  A = 5. Also, the initial wall stress TB, 
is assigned a value of 0.01, and we choose 6 = 0.1 and e = 6 so that b = 1. We consider 
values of K between lo3 (representing a very flexible tube) and lo8 (representing a 
nearly rigid tube), and values of dimensionless frequency 1 < a < 12. For the fixed 
A ,  M ,  and G discussed above, these parameter ranges correspond to moduli of 
elasticity between 28 and 2.8 x los and cycling frequencies between 0.03 and 4.2 Hz. 

We are interested in the response of the flexible-walled tube, particularly in the 



142 C .  A .  Dragon and J .  B.  Grotberg 

7 t  
I 

5 
D 

3 

1 

9 

-11 
1 3 5 7 9 11 

I I - 
$ 1  1 -  

1 3 3.5 5 6.5 7 9 I 1  

U 

FIGURE 1. Radial wall position at  5 = 0, 7 = Dcos ( t - $ ) ,  as a function of a, and for V, K = lo3; 
0,  K = lo4; 0, K = 10'; A, K = 10'. (a )  D, the peak radial wall displacement amplitude; ( b )  q5, the 
phase angle. 

radial direction, to  the motion of the fluid. To leading order, the radial wall motion 
rl, evaluated at 5 = 0, may be expressed as 

v1(5= 0) = Dcos(~-$) ,  (4.1) 

where D is the displacement amplitude and $ the phase difference between the 
forcing of the fluid (the flow rate q = Q cos ( t ) )  and the response of the wall. This phase 
lag is determined by the damping in the system and by the relationship between the 
natural and forcing frequencies. The amplitude D is also affected by the damping, 
natural frequency, and forcing frequency, as well as the forcing amplitude. 

Figure 1 (a)  illustrates how D, the radial wall displacement amplitude, varies with 
a, the dimensionless frequency, for K = lo3, lo4, lo5, and lo8. For the case K = lo8, 
the amplitude is negligible for most a in the parameter range, which is in agreement 
with the earlier assumption that K = lo8 represents a rigid tube. In  the cases K = lo3 
and K = lo4, D reaches a local maximum. The case K = lo5 neither peaks nor levels 
off in this parameter range. Note that after the K = lo4 and K = lo3 curves intersect, 
the stiffer tube has a larger displacement amplitude. 
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FIGURE 2. Steady axial velocity profile at 6 = 0 as a function of r ,  for 0, a = 2; 0,  a = 6; 

1 

A, a = 10: (a) K = 106; ( b )  K = 104; (c) K = 109. 

The relationship between q5, the phase angle, and a is illustrated in figure 1 (b)  for 
the same cases as in figure 1 (a) .  Recall that 4 represents the phase difference between 
the forcing of the fluid and the response of the wall. For all values of K shown, 9 has 
approximately the same value for small a. In  the cases K = lo6 and K = lo*, the phase 
lag decreases asymptotically to zero, in this parameter range, while the softer tubes, 
K = lo3 and K = lo4 exhibit local minima which are indicated. Both the K = lo4 and 
K = lo3 curves approach q5 = as a increases, suggesting that for these cases, high 
frequencies result in wall responses that are a quarter of a cycle out of phase with the 
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flow. Note that the minimum values of the ($,a)-curves shift to the left as K 

decreases, suggesting that the response of more flexible tubes are most in phase with 
the driving force at lower frequencies. 

Turning our attention to the motion of the fluid, we examine the axial steady 
streaming found at O(6) which results from the nonlinear wave mechanics. Figure 
2 (a+) illustrates the steady velocity field, wf) ,  at  the fixed axial position 5 = 0 for 
a = 2 , 6 ,  and 10, and for the cases K = lo5, lo4, and lo3. The K = lo8 case is not shown 
since it models an essentially rigid tube in which the steady streaming is negligible. 
Note that in each part of the figure, the velocity a t  r = 1 is non-zero because the no- 
slip boundary condition at this order requires zero axial velocity at  the boundary 
r = 1 + 7. For K = lo4 and K = lo5, we generally have positive streaming near the wall 
and negative streaming in the core. It is interesting to note that for a = 2 and a = 
6, the amplitude of the steady streaming increases as the stiffness, K ,  decreases. 
However, a t  higher frequencies, a = 10, the steady streaming velocity increases in 
amplitude only between K = lo5 and K = lo4, and then decreases, in the core, as K 

goes from lo4 to lo3 while developing flow reversal near the wall boundary. It is 
interesting to compare these results to those of Grotberg (1984), Gaver & Grotberg 
(1986), and Godleski & Grotberg (1988) in which steady streaming was examined for 
oscillatory flow in tapered tubes and channels. They found that for a G 6 ,  
approximately, steady streaming was positive (towards the wider end of the tapered 
tube) in the core and negative near the wall, exactly the opposite of the results 
discussed above for a flexible tube where we consider 5 = 0 to coincide with the 
proximal tube end. However, a t  higher frequencies of oscillation, they found steady 
streaming velocities similar to those pictured in the a = 10 case of figure 2 ( c ) .  These 
comparisons suggest that the effects of taper and flexibility on steady streaming may 
compete a t  low frequencies and reinforce each other at high frequencies. Calculations 
of the O(6) steady axial pressure gradient indicate that ap?)/i3[ > 0 over a wide range 
of parameters. This is similar to the steady pressure gradient in a rigid tapered tube 
(Godleski & Grotberg 1988), in which the steady pressure a t  the wider end is greater 
than at the narrow end. It is noteworthy that these two results are consistent with 
the observations and pressure measurements during high-frequency ventilation by 
Simon et al. (1984), discussed in the introduction. 

5. Concentration field: problem formulation 
Using the results for the velocity field, the transport of a dissolved species within 

the tube can be determined from the convection-diffusion equation, which governs 
the transport of a soluble substance with molecular diffusivity D,. In dimensionless 
circular cylindrical coordinates, assuming axisymmetric transport, the equation 
takes the form 

a2c ac a2c 
Sc a2-+u-+dw- = - + - - + P -  

ac ac [ at ar a l  ar2 r a r  ae' 
where c* has been scaled on c", the steady concentration at  the axial position z* = 0. 
The new dimensionless parameter that appears above is the Schmidt number, Sc = 
v/D,, which can be thought of as the ratio of the rate of fluid vorticity diffusion to 
contaminant diffusion. By retaining the lubrication scale, 5 = 82, in the above 
equation, the concentration field is assumed to vary slowly in the axial direction. 

Because the tube wall is impermeable, a no-flux condition is imposed a t  the wall 
so that 

n-Vc = 0 at r = l + y ,  (5.2) 
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where the unit normal n is defined as 

n = VF/IVFI, (5.3) 
and F(r ,  z, t )  = r - R ( [ ,  t )  = 0. We also prescribe the time-independent concentration 
at two fixed axial reference points in the tube, say at  5 = 0 and 6 = 1 = 6L/a, so that 

c@)(r, 0) = 1,  c@)(r, 1)  = 0, (5.4) 

where, as before, the superscript (s) indicates the steady component. The above 
condition allows the concentration to vary at  the specified axial positions over the 
course of a periodic cycle, but requires that the steady component of the 
concentration a t  those points be constant. 

6. Concentration field: method of solution 
The appearance of the small parameter S in the convection-diffusion equation 

suggests a solution for the concentration field in the form of a regular perturbation 
expansion : 

Substituting (3.1 a, b )  and (6.1) into the convection-diffusion equation gives a linear 
boundary-value problem a t  each order of 6. Taylor's theorem is used to expand the 
no-flux condition about the radial position r = 1. The resulting leading-order 
equation and boundary conditions dictate that co is independent of time and radial 
position, so that co = co(5),  but the functional dependence of co on 6 is still unknown. 

At O(6) the convection-diffusion equation is a balance of the unsteady term with 
radial diffusion and axial convection. It has travelling wave solutions of the form 

c(r, 5, t )  = C O P ,  5, t )  + Sc,(r, 5, t )  +0(a2). (6.1) 

where dco/dg is yet undetermined and C,(r) is solved by using the method of 
variation of parameters and can be expressed as 

(6.3) C ,  = p1 J,(aScf)+Z,(r) ~ , ( a ~ c f )  +z,(r) K(aScb), 

where Z,(r)  = -&Sc[W,(s) Y,(aSc&)sds, 

Z,(r) = inSc W,(s) Jo(aScb) s ds, 

( 6 . 4 ~ )  

(6.4b) 

and PI is determined by the no-flux condition. Y ,  is the zeroth-order Bessel function 
of the second kind, and Wo is the radial dependence of the leading-order axial fluid 
velocity given in (3.10). 

To arrive at a condition for solving cO(y) we look to O(S2), which is a partial 
differential equation for c2(r, 5, t )  : 

ac, a2c, i ac, d2co 
a2Sc------r - dYL 

at ar2 

with the corresponding no-flux condition 

Note that in the above equation, the unsteady term is balanced by terms 
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representing radial convection and axial diffusion as well as radial diffusion and axial 
convection ; also, the no-flux condition is non-homogeneous and contains the wall 
position explicitly. The products of the unsteady velocities and concentration 
gradients on the right-hand side of (6.5) generate both steady and unsteady 
quantities, so that the O(c9,) equation has a solution of the form 

c2 = C f ) ( r ,  y) + Cp)(r) e-i(k5-t) + C(2)(r)  2 e-Zi(k5-t) + c * .  c (6.7) 

The differential equation for the steady component of c, provides the necessary 
condition to determine co(c). Integrating this equation over the cross-section gives 

where the superscript (s) denotes the steady component of each quantity. Next, the 
chain rule is applied to the third term on the right-hand side above, the second term 
on the right-hand side is integrated by parts, and the conservation of fluid mass 
condition (equation (2.4)) is implemented. Applying the no-flux condition and 
substituting the results obtained earlier for the velocity components and con- 
centration, we obtain a second-order ordinary differential equation for co(c) : 

Integrating this equation twice and implementing the end conditions gives 

f F ( s )  ds 

+ 1, 

where the function F ( s )  is given by 

and 

(6.10) 

a, = 2L"crKC17d7, 0 (6.12a) 

Note that the expression for cl(r, c, t )  is now complete since dco/d[ can be calculated 
from (6.10). 

As the flexible tube under consideration becomes very stiff, it can be shown that 
the wavenumber, k, and the constant a2 approach zero, so that the above expression 
for co([) becomes linear in [. This is consistent with long-wave theory, since the rigid- 
tube result is obtained in the limit K + 00. 

7. Concentration field: results 
Assigning the same values to the dimensionless parameters as discussed earlier, 

and with Sc = 0.882, the effect of wall flexibility on the concentration field over a 
range of frequencies is examined. In the rigid tube, the axial concentration gradient 
is a constant, so that c@) is a linear function of g for all values of a. The corresponding 
c@) in the flexible-tube problem is the leading-order concentration, co ; in our analysis, 
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FIQURE 3. Steady concentration profile as a function of c, for 0 ,  u = 2; 0,  u = 6; A, a = 10; 
(a) K = 104; ( b )  K = 103. 

K = 10' gives the expected linear concentration profile. However, as K decreases, the 
dependence of co on 6 becomes nonlinear and frequency dependent. Figure 3(a,  b )  
illustrates c,, as a function of 6 for a = 2, 6, and 10 for the two cases K = lo4 and 
K = lo3. For a = 2, both values of K give nearly linear concentration profiles. 
However, as frequency increases to a = 6 and a = 10, the profiles become nonlinear 
as they curve upward. 

8. Mass transport 
The objective of this analysis is to determine the time-mean longitudinal transport 

of the species through the flexible tube under conditions of volume-cycled flow with 
uniform steady end concentrations. This quantity, the steady rate of axial mass 
transport, can be expressed by the integral of the convective and diffusive transport 
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across the cross-section, averaged over one period. In dimensionless form, this steady 
axial mass transport rate is given by 

In  the above expression, the dimensional steady transport rate, which has units of 
mass per unit time, has been scaled so that m = m*/(avc”). 

We can insert the asymptotic expansions found as solutions for w and c into the 
above equation, noting that the time-periodic terms integrate to zero, to obtain an 
expansion for the steady rate of transport : 

It may appear that the above expression for axial transport depends on the axial 
coordinate c. However, in order for mass to be conserved, the steady transport of 
contaminant through any cross-section must be constant, so that m is actually 
independent of 5. 

9. Mass transport: results 
Assigning the same values to the dimensionless parameters as discussed earlier, the 

effect of wall flexibility on the steady mass transport rate over a range of frequencies 
is examined. 

Fig. 4 illustrates the relationship between m and a for K = lo3, lo4, lo5, and lo*. 
Here we are able to see the effect of wall flexibility on the rate of mass transport. The 
curve corresponding to K = lo8 coincides with mean mass transport in a rigid tube. 
For smaller K ,  the mass transport is less than or equal to that of the rigid tube for 
all a; in fact, as K decreases, m also decreases for most a in the parameter range 
considered. Experimental observations appear to be in agreement with the trend of 
the results presented here : a decrease in gas exchange efficiency due to radial airway 
motion was observed by Gavriely et al. (1985) in cineradiobronchograms of dog lungs 
undergoing high-frequency ventilation. Because air is shunted in the radial direction 
by the wall motion, axial transport of a diffusible species is reduced. Likewise, our 
theory indicates that lower wall stiffness (lower K )  leads to increased wall motion 
(figure l a )  and to reduced mass transport rates. The mechanism, however, is more 
complicated as we now explore. 

Another important aspect of figure 4 is the presence of a local maximum on the 
K = lo4 and K = lo3 curves. A maximum m for the K = los curve may exist outside the 
parameter range; however, for rigid tubes m increases monotonically with a. The 
presence of a local maximum mass transport rate is significant, since it suggests that 
an optimal oscillation frequency exists. We also note that the frequency a t  which m 
reaches its peak is dependent on K .  Very flexible tubes appear to give the best 
transport a t  low a, and stiffer tubes reach their maximum transport rate a t  higher 
a. Note the similarity between the m versus a curves, figure 4, and the q5 versus a 
curves, figure 1 ( b ) .  These two figures appear to be inverses of each other; not only 
are their shapes similar, but the maximum mass transport rate on each curve occurs 
a t  a value of a near the minimum phase angle. This observation suggests that the 
delay between the volume flow rate and the response of the tube wall is a significant 
factor in determining the rate of mass transport. The highest transport rate for any 
given K appears to occur roughly when the wall response is closest to being in phase 
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FIGURE 4. Steady mass transport rate as a function of u, for V, K = lo3; 17, K = 10'; 

0,  K = 105; A, K = 108. 

with the flow. When no minimum phase difference occurs, as in the case K = lo*, no 
maximum value of m occurs. Also, the a values for maximal mass flow rate are far 
from those for maximal amplitude, D, in figure 1 (a ) ,  suggesting that the magnitude 
of lateral shunting may not be as important as how it affects the phase relationship 
between flow and wall motion. 

Up to this point in the analysis, the amplitude parameter A has been held fixed a t  
A = 5.  In high-frequency ventilation, the rate of gas exchange (or mass transport) as 
a function of tidal volume (V, = A(na3)) is of interest, so the effect of changing A is 
shown in figure 5(a-c). For rigid tubes we know that m is proportional to A2 
independent of a, a slope of 2 in these log-log plots. In  figure 5(a ) ,  where a = 2, m 
is plotted against A for various values of K .  Clearly the slopes here are less than 2. In 
figure 5 ( b ) ,  a = 6, and the slope of 2 is apparent in the stiffer tubes for A > 3, 
approximately, but the K = lo3 tube shows a slope of approximately 0.9 or less. 
Figure 5 ( c )  shows, for a = 10, the drop off in slope for both the K = lo3 and lo4 tubes. 
All three figures show that the axial mass transport increases with increasing stroke 
amplitude. 

Examining each term in the expression for m given by (8.2), we find that the 
diffusion and steady drift terms are unaffected by changes in 4, and that the 
convective term is responsible for the behaviour of the  low-^ curves in figure 4. It is 
the integral of the product (rwocl)(s) that is responsible for the existence of a 
maximum rate of transport. We examine the distribution of (Two c ~ ) ( ~ )  over the cross- 
section of the tube at = 0 for several values of a and K = lo4 (figure 6 a ) ,  and K = 
lo* (figure 6 b ) .  In  both cases it is interesting to note that the contribution to m is 
negative near the tube wall and, for a > 6, in the centre of the tube. The positive 
contribution to m comes from the interaction of wo and c1 in the middle region of the 
profile. In  the nearly rigid-tube case (figure 6 b ) ,  the peak value of the convective 
term increases as a increases. However, in the more flexible tube (figure 6a) ,  the peak 
value of the convective term increases with a when a is small, but decreases with a 
for a > 8. Thus, as the frequency of oscillation increases in  low-^ tubes, the 
interaction of wo and c1 is inhibited so that mass transport is reduced. 

As discussed earlier, convection and diffusion interact during oscillatory flow to 
enhance the axial mass transport rate over that which would occur by diffusion 
alone. Often, this enhancement is expressed as an effective diffusivity, D&, defined 
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FIQURE 5. Log (m)  versus log ( A )  for fixed values of u and K ,  for V, K = lo3; 0 ,  K = lo4; 
0 ,  K = lo5; A, K = lo8 for (a )  a = 2, ( b )  a = 6, (c) a = 10. 
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FIGURE 6. Steady product of wo(r) ,  e l ( r ) ,  and r at = 0 as a function of r ,  for 0,  a = 2 ;  

as the ratio of the time-averaged mass flux to the steady axial concentration 
gradient. Scaling DZff on the molecular diffusivity, so that Dele = DZff/Dm, the 
dimensionless effective diffusivity can be expressed as 

In rigid tubes, the axial concentration gradient is constant, so that Dell differs from 
the mass transport rate, m, by a constant. However, in the flexible-tube analysis 
presented here, the relationship between m and Deft is not as simple ; m is independent 
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FIGURE 7. Time-averaged effective diffusivity as a function of c, for K = lo4 and 0,  a = 2 ;  
A, a = 6; 0, a = 10. 

of z while Deff is not, since dc,/dz is not a constant. Figure 7 illustrates how Deff  
decreases along the y-axis for a = 2, 6, and 10 and K = lo4. Note that the rate of 
decay is larger when the frequency a is higher. Although the a = 10 curve has a 
higher effective diffusivity near 5 = 0, its rapid decay results in a lower effective 
diffusivity than the a = 6 curve over most of the length of the tube; as a result, axial 
mass transport is better when a = 6 than when a = 10, as illustrated earlier in figure 
4. Perhaps a more useful descriptor is to characterize the tube’s transport ability by 
using its fixed, time-averaged concentration difference at the 5 = 0 and 5 = 1 axial 
positions. If we call G, the axial conductance and define it as the ratio of mass flux, 
(m*/na2), to the overall concentration gradient, AC*/Az*, we arrive a t  the 
relationship - 

mSc L G =--. 
n a  ax 

Then G,, is related to the graphs of m in figures 4 and 5 by the above multiple, where 
L is the axial length over which the concentration gradient is fixed. For our example, 
L/a  = 10. 

10. Discussion 
Transport in flexible tubes is enhanced by volume-cycling of the fluid over that of 

pure diffusion, a t  least over a range of frequencies. This can be attributed to the 
interaction of axial convection with radial diffusion ; solute diffuses radially to  
regions of higher axial velocity. Our results indicate that the enhancement of 
transport in flexible tubes is less than that in rigid tubes. Also, tube flexibility 
introduces the presence of a maximum transport rate, which occurs when the motion 
of the tube wall in response to the volume cycling is most in phase with the volume 
flow rate. 

In  this study we have chosen parameter values that are relevant to gas transport 
in the pulmonary airways. If we apply the results above to ventilation, we can think 
of fixed A as constant tidal volume and increasing a as increasing breathing 
frequency. The presence of the local maximum in the m versus a curves may explain, 
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FIGURE 8. (a) K as a function of airway generation in excised dog lungs. Curves shown are for 
transmural pressures in the range : A, 0-5 cm saline ; 0 ,  1Ck15 cm saline ; [7,20-25 cm saline ; ( b )  
K of the human trachea as a function of age. Transmural pressure = 5 cm water. 

in part, the experimental results of Slutsky et al. (1980), Rieke et al. (1983), Mitzner 
et al. (1983), and Rossing et al. (1981), in which gas exchange efficiency peaked or 
plateaued with increasing frequency of oscillation. In a clinical setting it is important 
to know whether to attribute such behaviour to pathology or to the complex mass 
transport characteristics of a normal lung. 

Another point to note is that the maximum transport rate depends on K ,  

suggesting the existence of an optimal frequency of oscillation during HFV that 
depends on lung compliance. Stiffer airways (high K) would more effectively be 
ventilated at a higher frequency than softer airways (low K ) .  We also note the 
possibility of using these characteristics as a diagnostic tool ; a diseased lung may be 
characterized by a measured gas exchange efficiency that peaks at a particularly high 
or low frequency. It is essential to consider how K varies with airway generation; 
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locating low+ generations may enable us to  identify the airways that are responsible 
for limiting gas transport. Martin & Proctor (1958) made pressure-volume 
measurements on three different sizes of excised dog bronchi that roughly correspond 
to the first, fourth, and ninth airway generations. Based on their data, K can be 
plotted as a function of airway generation for several transmural pressure intervals, 
as shown in figure 8(a).The plot illustrates that  deeper airways tend to have the 
lowest K ,  so they may become important limiters of transport. Also, a t  higher 
transmural pressure intervals K is larger in all airways, suggesting that HFV might 
be more effective when a steady pressure, such as positive end expiratory pressure 
(PEEP) is superimposed over the oscillatory one. Age also plays a role in determining 
a patient’s optimal breathing frequency. Pressure-volume measurements from 
Croteau & Cook (1961), along with the assumption that tracheal radii vary linearly 
with size, can be used to calculate K in the trachea for humans ranging in age from 
newborn infants to  sixteen year olds, as illustrated in figure 8(b) .  

Several investigations of high-frequency ventilation in animals and hardware 
models regress the collected mass transport data as a product of frequency and tidal 
volume (Paloski, Slosberg & Kamm 1987; Tarbell, Ultman & Durlofsky 1982; 
Rossing et al. 1981). I n  our notation such a relationship would appear as m z abAe, 
where b and e are empirical constants. In  a straight, rigid tube e = 2,  while b = 4 for 
small a and b = 1 for large a .  As a counter-example, however, figure 4 shows that 
b < 1 for large a in stiffer tubes and b < 0 for large a in the softer tubes. Also, figure 
5 shows that e is a-dependent when flexibility is important. Such simple regressions, 
therefore, may not be readily transferred from rigid branching network models to 
intact animals when airway compliance is significant. 

This work was supported by NIH grants HL-01818, HL-41126 and HL-35440. 

Appendix. Dimensional values 
In  computing the results for the velocity field, wave characteristics, etc. we are 

interested in the effect of wall flexibility over a range of frequencies. Therefore, the 
other parameters of the problem are fixed. In  choosing constants for the problem, 
effort was made to choose constants that are relevant to gas transport in the trachea. 
The dimensional parameters have the following values : 

inner radius of undeformed tube (trachea) : 
tube thickness : 
kinematic viscosity (of air) : 
molecular diffusivity (of CO, in air) : 
fluid density (air): 
wall density : 
Poisson’s ratio : 
tube length: 
wall damping : 
Tidal volume (for A = 5 )  
frequency (for 1 d a d 12) 
modulus of elasticity (for lo3 < K < lo8) 

a = 0.9 cm 
h = 0.05 cm 
v = 0.15 cm2/s 
D,  = 0.17 cmz/s 
p = 0.001 14 g/cm3 
po = 0.997 g/cm3 
y = 0.5 
1 = 10 cm 
g = 5.0 s-l 
V, = 11.5 om3 
0.03 <f d 4.3 
28 < E < 2.8 x lo6 g/(cm s2) 
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